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Abstract

In this paper, an approach for resource-constrained flexible manufacturing system (FMS) scheduling was proposed, which is based on
the particle swarm optimization (PSO) algorithm and simulated annealing (SA) algorithm. First, the formulation for resource-con-
strained FMS scheduling problem was introduced and cost function for this problem was obtained. Then, a hybrid algorithm of PSO
and SA was employed to obtain optimal solution. The simulated results show that the approach can dislodge a state from a local min-
imum and guide it to the global minimum.
� 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in
China Press. All rights reserved.
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1. Introduction

Resource-constrained flexible manufacturing system
(FMS) scheduling problem is a typical non-polynomial
(NP) problem. Historically, resource-constrained FMS
scheduling problem was treated via classical math optimi-
zation or heuristic methods. The conventional methods
[1,2], such as dynamic planning and expert system, for solv-
ing this NP problem cannot obtain reasonable solution.
The math optimization algorithm is mainly based on the
branch and bound method [3]. Because it is time-consum-
ing and can only solve small problems, such algorithm
has no attraction to practitioners. On the other hand, heu-
ristic algorithms, which are quite good alternatives, have
been developed greatly during the past decade, such as
the simulated annealing [4], taboo search [5], and genetic
algorithm [6]. Zhou [7] and Lo [8] have proposed a meth-
ods for Job-shop problem (JSP) with neural networks to

minimize makespan. However, only local optimum can
be obtained because of the weakness of learning algorithm.
Recently, Wang and Zhang proposed a hybrid optimiza-
tion strategy (GA-SA) [9] and Binato et al. proposed a
greedy randomized adaptive search procedure for solving
resource-constrained JSP scheduling problem [10].

2. Formulation of scheduling for FMS

2.1. Formulation

Scheduling for FMS is a reasonable allocation of con-
strained resource of FMS while minimizing a certain criterion.
The resources are called machine, tool, fixture, etc. Therefore,
scheduling problem in fact is constrained optimization prob-
lem. The restrains among operation of each job and precedence
order of jobs completion time, which the order is provided by
planning system of flexible assemble system (FAS), must be
subject to optimization assembly performance.

The manufacturing system, which is to schedule, is
assumed as follows:
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r Jobs i (i = 1,2, . . .,n) and operations j (j = 1,2, . . ., ni).
s S (s = 1,2, . . .,m) kinds of resource, the number of each

resource is rs.
t The completion time of operations of jobs is subject to

the precedence constraints.
u The completion time of jobs is subject to the prece-

dence constraints.
v Minimize the total completion time.

The constraints are given by the following inequalities:

xij � xil þ til 6 0

for all ½j; l� 2 Ri; i ¼ 1; 2; � � � ; n;
j ¼ 1; 2; � � � ; ni ð1Þ

xij � xil þ til 6 0 or xil � xij þ tij 6 0;

for all ½j; l� 2 Qi; i ¼ 1; 2; � � � ; n;
j ¼ 1; 2; � � � ; ni ð2Þ

xij � xil þ til 6 0 or xil � xij þ tij 6 0;

for all ½j; l� 2 Nsq; s ¼ 1; 2; � � � ; n;
q ¼ 1; 2; � � � ; rs ð3Þ

xk � xi 6 0; for all ½k; i� 2 P ð4Þ
tij � xij 6 0; i ¼ 1; 2; � � � ; n;

j ¼ 1; 2; � � � ; ni ð5Þ
where n is the number of jobs, ni is the number of operation
for the ith job, m is the number of resource, rs is the num-
ber of each resource, Ri is the set of operation couple [j, l] of
job i(i = 1,2, . . .,n) with operation j prior to operation l, Qi

is the set of operation couple [j, l] of job i(i = 1,2, . . .,n)
with no precedence between operation j and l, Ii is the set
of operation which can be assigned first, i = 1,2, . . .,n, til

is the processing time of l operation of the ith job,
l = 1,2, . . .,nj, i = 1,2, . . .,n, xij is the completion time of j
operation of the ith job, l = 1,2, . . .,ni, i = 1,2, . . .,n; xi is
the completion time of operation which is the last one in
scheduling sequences for job I; Nsq is the set of operation
occupying the qth resource of resource s; and P is the set
of job couple [k, i] with job i prior to job k.

The constraint (1) ensures that the precedent constraint
relation of each job’s operation is to be satisfied. The con-
straint (2) is to avoid the overlap (in time) between two oper-
ations of each job. The constraint (3) ensures that every single
resource only can be used by one job. The constraint (4) is to
satisfy the precedent relation of the jobs. The constraint (5) is
to ensure that the starting time should be positive. Therefore,
the mathematical formulation for solving resource-con-
strained FMS scheduling is described as follows:

Minimize
Xn

i¼1

xi

subject to constraints from (1) to (5).

3. Particle swarm optimization algorithm

Particle swarm optimization (PSO) is a parallel popula-
tion-based computation technique proposed by Kennedy

and Ebehart [11,12], which was motivated by the organisms
behavior such as schooling of fish and flocking of birds.
PSO can solve a variety of difficult optimization problems
[13]. PSO’s major difference from genetic algorithm (GA) is
that PSO uses the physical movements of the individuals in
the swarm and has a flexible and well-balanced mechanism
to enhance and adapt to the global and local exploration
abilities, whereas GA uses genetic operators. Another
advantage of PSO is its simplicity in coding and its consis-
tency in performance.

3.1. Standard particle swarm optimization

PSO is similar to the evolutionary algorithm, and its sys-
tem is initialized with population (named swarm in PSO) of
random solutions. Each individual or potential solution,
named particle, flies in the multi-dimensional problem
space with a velocity dynamically adjusted according to
the flying experiences of its own and its colleagues. The glo-
bal optimizing model proposed by Shi and Eberhart [14] is
as follows:

V id ¼ W � V id þ C1 �Rand� P best � X idð Þ
þ C2 �Rand � Gbest � X idð Þ ð6Þ

X id ¼ X id þ V id ð7Þ

where Vid is the velocity of particle i, Xid is the particle po-
sition, W is the inertial weight, C1 and C2 are the positive
constant parameters, Rand is the random functions in the
range [0, 1], Pbest is the best position of the ith particle,
and Gbest is the best position among all particles in the
swarm.

For Eq. (6), the first part represents the inertia of the
previous velocity. The second part is the cognition part,
which represents the private thinking of itself. The third
part is the social part, which represents the cooperation
among particles. The process for implementing the PSO
algorithm is as follows:

r Initialize a swarm of particles with random positions
and velocities in the multi-dimensional problem space.

s For each particle, evaluate the desired optimization fit-
ness function.

t Compare particle’s fitness value with particle’s Pbest. If
the current value is better than Pbest, then set Pbest
value equal to the current value, and the Pbest position
equal to the current position in the multi-dimensional
space.

u Compare the fitness evaluation value with the best
swarm’s fitness value obtained so far. If the current
value is better than Gbest, then reset Gbest to the cur-
rent particle’s value.

v Change the velocity and position of the particle accord-
ing to Eqs. (6) and (7), respectively.

w Loop to step (2) until a stop criterion is satisfied, usu-
ally a sufficiently good fitness or a specified number of
generations.
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3.2. Setting parameters

In Eq. (6), inertial weight (W) is an important parameter
to search ability of PSO algorithm. A large inertia weight
facilitates research in a new area while a small inertia
weight facilitates fine-searching in the current search area.
Suitable selection of the inertia weight provides a balance
between global exploitation, and results in less iteration
on average to find a sufficiently good solution. Therefore,
linearly decreasing the inertia weight from a relative large
value to a relatively small value through the course of
PSO run, PSO tends to have more local search ability near
the end of run. In this study the inertia weight is set to be
the following equation:

w ¼ wmax �
wmax � wmin

Imax

� I ð8Þ

where wmax is the initial value of weighting coefficient, wmin

is the final value of weight coefficient, Imax is the maximum
number of iterations or generation, and I is the current
inertia or generation number.

3.3. Fitness function

Fitness is used as performance evaluation of particles in
the swarm. Fitness is usually represented with a function f:

s ? R+ (s is the set of candidate schedules and R+ is the set
of positive real values). Mapping an original objective
function value to a fitness value that represents relative
superiority of particles is a

E¼
Xn

i¼1

xijþ
Xn

i¼1

X
j

X
l

H 1 �F 1 xij�xjlþ tjl

� �
j;l2Ri

þ
Xn

i¼1

X
j

X
l

H 2 � ðmin F 1ðxij�xjlþ tjlÞ;F 1ðxjl�xijþ tijÞ
� �

j;l2Qi

þ
Xm

s¼1

Xrs

q¼1

X
j

X
l

H 3 � min F 1 xij�xjlþ tjl

� �
;F 1 xjl�xijþ tij

� �� �� �
j;l2N sqi

þ
X

k

X
i

H 4 �F 1 xk�xið Þ
k:i2P

þ
Xn

i¼1

Xni

j¼1i

H 5 �F 1 xij� tij

� �

feature of evaluation function. In resource-constrained
FMS scheduling problem, the objective function is to
minimize the cost function. We can propose the following
cost function for resource-constrained FMS scheduling
problem:

where H1, H2, H3, H4, H5 are positive constants which
are usually largely depending on the problem to be solved.
Actually, it is a penalty function of resource-constrained
FMS scheduling problem

F ðxÞ ¼
ex; x > 0

0; x 6 0

�

4. Simulated annealing algorithm

Simulated annealing (SA) algorithm is a meta-strategy
local search method that attempts to avoid producing the

poor local maximum inherent in the steepest ascent
method. It employs additional random acceptance strategy
that allows occasional downhill moves to be accepted with
certain probabilities [15]. SA algorithm has produced good
results for many scheduling problems [16].

In SA algorithm, the improvements are obtained by
choosing another solution s0 that belongs to the neighbor-
hood N(s0) of the current solution s0. When the current
solution changes from s0 to s0, the objective function will
also change, namely, D = E(s0) � E(s0). For the minimiza-
tion problem, if D < 0, the new solution s0 will be accepted.
If D > = 0, the new solution will be accepted with the prob-
ability exp(�D/t), where t is the temperature. Generally,
the algorithm starts from a high temperature, and then
the temperature gradually decreases. At each temperature,
the search will be performed for a certain number of itera-
tions, which is called the temperature length. When the ter-
mination condition is satisfied, the algorithm will stop.

4.1. Control parameters selection

SA algorithm generally must be carefully designed
because the choice of its parameters might affect the quality
of the solution and computation. In general, a slow search
will lead to better solutions. However, the slow search
tends to consume more computation time. Therefore, it is
necessary to take a tradeoff between them.

Control parameters were set according to the problem
characteristics. Through many experiments, we found that
the solutions and running time are both better when the ini-
tial temperature is set according to the maximal difference
in fitness value between any two neighboring solutions. The
length of temperature denotes the number of moves made
at the same temperature, and generally, it is set according
to the size of neighborhood solutions for a given solution.
In SA optimization process, the temperature is gradually
lowered. It is well-known that the method that specifies
temperature with the equation tk = ktk�1 is often a good
choice and can provide a tradeoff between computational
time and good solutions. The smaller the cooling rate k
is, the quicker the temperature descends. To terminate
the algorithm, we select the termination temperature tend,
when the current temperature t < tend the algorithm will
stop. Generally, tend is a small value.

5. Hybrid PSO algorithm

PSO algorithm is problem-independent, which means
that little specific knowledge relevant to given problem is
required. What we have known is just the fitness evaluation
for each solution. This advantage makes PSO more robust
than many other search algorithms. However, PSO, as sto-
chastic search algorithm, is prone to lack global search
ability at the end of a run. PSO may fail to required opti-
mum in case when the problem to be solved is too compli-
cated and complex. SA employs certain probability to
avoid becoming trapped in a local optimum and search
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process can be controlled by the cooling schedule. By
designing the neighborhood structure and cooling schedule
of SA, we can control the search process and avoid individ-
uals being trapped in local optimum more efficiently. Thus,
a hybrid algorithm of PSO and SA is presented as follows:

Begin
Step 1. Initialization

(1.1) Initialize swarm size, each particle’s position
and velocity.

(1.2) Evaluate each particle’s fitness function.
(1.3) Initialize Gbest position with the lower fitness

particle in swarm.
(1.4) Initialize Pbest position with copy of particle

itself.
(1.5) Initialize wmax, wmin, Imax, C1, C2, maximal gen-

eration, and generation = 0.
(1.6) Determine T0, Tend, and k.

Step 2. Computation

(2.1) PSO
While (the maximum of generation is not satisfied)
Do{generation++;

Generate next swarm by Eqs. (6) and (7)
Evaluate swarm {Find new Gbest, Pbest; Update
Gbest of swarm and Pbest of particle;}
}

(2.2) SA
For Gbest, particle s of swarm

{Tk = T0;
While (Tk > Tend)
Do {Generate a neighbor solution s0 from s0;

Compute fitness of s0

Evaluate s0 {D = E(s0) � E(s0);
If (min[1, exp(�D/Tk) > random[0,1]])

{Accept s0}
Update the best solution found do far if

possible;}
tk = ktk�1;

}
}
Step 3. Output optimization results.

End

It can be seen that PSO provides initial solution for
SA during the hybrid process. Such hybrid algorithm
can be converted to general PSO by omitting SA unit,
and it can be converted to traditional SA by setting
swarm size to one particle. PSO implements easily
and reserves the generality of PSO and SA. Moreover,
such hybrid algorithm can be applied to many combi-
natorial optimization problems by simple modification.

6. Simulation result

The initial coefficients are as follows:

The parameter for SA: T0 = 10,000; k = 0.98; H1 =
H2 = H3 = H4 = 100, H5 = 1.

For PSO algorithm, wmax = 0.9, wmin = 0.4, c1 = 0.3,
c2 = 0.5, swarm size is set to be 30 and the maximum of
iterative generations Imax is set to be 300.

Simulations were successfully done on 2 jobs/3 machines
scheduling problem given in Ref. [7]. Fig. 1 shows the data
of 2 jobs/3 machines scheduling problem. Fig. 2 shows the
optimum scheduling, the order of completion time is
x2 = 10, x1 = 15, x3 = 19, the maximum machine occupy
time is 19, and the total completion time is 44. It is better
than the results of Ref. [7]. The same simulations were also
done on the 10 � 10 problem in Ref. [7]. The results, with
the maximum machine occupation time of 95 and the total
completion time of 867, is better than the results of Ref. [7],
with maximum machine occupation time of 98 and the
total completion time of 889.

7. Conclusions

We have formulated a resource-constrained FMS sched-
uling problem. A novel hybrid algorithm based on SA and
PSO has been proposed, which the optimum can be
obtained. The approach is flexible. It incorporates different
machines, different job lengths. The performance of hybrid
PSO algorithm is evaluated in comparison with the other
optimization methods. The result shows that the new algo-
rithm is more effective and efficient.

Fig. 1. Data of 2 jobs/3 machines scheduling problem.

Fig. 2. GANTTE of scheduling problem shown in Fig. 1.
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